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Abstract—As societies shift to “greener” means of transportation
using electricity-driven vehicles one critical challenge we face is
the creation of a robust and resilient infrastructure of recharging
stations. A particular issue here is the optimal location of service
stations. In this work, we consider the placement of battery
replacing service station in a city network for which the normal
traffic flow is known. For such known traffic flow, the service
stations are placed such that the expected performance is
maximized without changing the traffic flow. This is done for
different scenarios in which roads, road junctions and service
stations can fail with a given probability. To account for such
failure probabilities, the previously developed facility
interception model is extended. Results show that service station
failures have a minimal impact on the performance following
robust placement while road and road junction failures have
larger impacts which are not mitigated easily by robust
placement.

Robustness, Resilience, Network optimization, electrical
transportation, Facility location

I INTRODUCTION

A systematic and generic approach to the design and
operation of networked systems has gained attention in recent
publications [1-6], following important results in the analysis
of networks [7-8]. In some of our recent publications, it has
been shown that efficiency and robustness are important
considerations in the design of networks, leading to different
optimal topologies [9-10]. In this work, we take this into
account to search the optimal location of service stations for
electrical vehicles.

Electrical vehicles constitute a technology that has made
significant progress in the last decade to the point where
gradual replacement of the vehicle fleet becomes realistic.
Important advantages of electrical vehicles include (1) more
efficient use of energy [11], thereby reducing the need for
energy resources, (2) flexibility in the choice for the source of
energy to be used for electricity generation, thereby reducing
the need for environmentally unfriendly resources and (3) the
reduction of diffuse pollution as produced by conventional
vehicles which is at least partly replaced by concentrated point-
wise pollution which is easier to manage (e.g. coal, gas or
nuclear based electricity plants). Despite these advantages, the
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successful transition to a society with a prominent role for
electrical transportation still requires considerable changes in
available infrastructure and corresponding investments. For
example, an electrical vehicle needs frequent replacement or
recharging of its battery for which service stations are
necessary. In addition, the travel range of an electrical vehicle
is rather small compared to conventional cars [12], making the
desired amount of such service location considerable large. We
consider the replacement of a used battery with a charged one
[13] the approach of choice as this does not require a long-term
stationary period. Electrical vehicles need to wvisit service
stations to replace a used battery in an electrical car with a
recharged one. To reduce the loss of energy due to such visits,
the stations are to be located in places which require minimal
adjustments in the normal traffic flow as expected for
conventional cars.

The above mentioned problem can be described by a
modified version of the facility-interception model [14] and
solved by means of an Integer Linear Programming (ILP)
approach [15]. In this work, we now consider that parts of the
infrastructure (road, road junctions and service stations) may
fail. To this end, we apply a particular failure rate for roads,
junctions and service stations and optimize the resulting
expected performance of the whole infrastructure by
optimization the location of service stations. This requires
further adjustment of the facility-interception model which
makes the problem computationally intensive in its complete
formulation. To reduce computational time, we consider only
the most important fraction of the paths taken through the
network. Our method is tested on the city of Alexandria, VA.
as a case study.

II.  MATERIALS AND METHODS

A. Case study

The optimization of the service station locations requires
that one knows the expected traffic flow in a given network.
One strategy to obtain such flows is to execute an extensive
monitoring campaign by which one measures the flows on
major roads and estimates flows in unmeasured sections of the
network, either by interpolation or extrapolation. Needless to
say that this is expensive and time-consuming. A second



strategy mitigates such problems by means of agent-based
modeling. Based on general expectations and distribution of the
residing population over the road network, agent-based
modeling allows to generate expected traffic flows. In this
study, we use the TRANSIMS software developed by Los
Alamos National Laboratory to forecast expected traffic flows.
This was previously done for Portland, Oregon [16] and
Chittenden County, Vermont [17]. We use the city of
Alexandria, VA, as a case study to test our optimization
method and software which is also available in TRANSIMS
and as used in prior work [15]. Figure 1 shows the road
network for this case study. Following the agent-based model
simulation, we obtain (1) the topology of the traffic network
including arcs (roads) and nodes (road junctions or terminal
ends), (2) the routes (paths) in the network with non-zero
traffic flow, (3) the traffic flow in each identified route. The
road network has 2620 nodes and 3653 arcs. The number of
unique paths is 114941 and the total flow 384584 cars per day.
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Figure 1. Road map of Alexandria, VA, with 5 service stations (squares)

TABLE L EVALUATED SCENARIOS FOR ROBUST FACILITY PLACEMENT
Scenario | Description Failure rate [%] - -
Arc | Node | Service station
1 No failure 0 0 0
2 Arc failures 1 0 0
3 Arc failures 5 0 0
4 Node failures 0 1 0
5 Node failures 0 5 0
6 Service station failures | 0 0 1
7 Service station failures | 0 0 5

B. Infrastructural failures

We optimize the location of service stations for several
scenarios as listed in Table 1. First, we consider a scenario
where all infrastructure elements (arcs, nodes and service
stations) show no failures, i.e. the failure rates for nodes (p.),
arcs (p») and service stations (ps) are all set to 0%. In our
current simulations, these are considered fixed across the

network although they can be set individually in the RNEDE
software implementation [6]. We optimize the location of 1 up
to 20 stations under these conditions. The obtained results are
used as a reference. Six additional scenarios are also considered
in which elements of one class only (arc, node, service station)
can fail. L.e., we consider scenarios where either arcs, nodes or
service stations are expected to fail but never together. By
doing so, we investigate the impact of the failures of individual
element classes on the design and expected performance. The
applied failure rates are 1% and 5% respectively.

C. Robust facility placement

A transportation network can be abstracted to a graph
representation, denoted G(N,A). In such representation, the set
of nodes, N, consists of road end points (terminal nodes) as
well as road junctions (non-terminal nodes) whereas the arcs,
A, represent the roads between nodes. A path is then defined as
a specified route from a given travel origin to a travel
destination. We define the set P as the set of paths, p, with a
non-zero traffic flow. For each of the paths in this subset, the
traffic flow is noted as f, (f,>0). The total flow in the given
network (fiw) 1s then written as:

ftara/:zpep fp (1)

Now, consider that one needs to locate a given number of
recharging facilities on the network so that the maximum
fraction of this flow in the network is intercepted without need
for re-routing. We write:

x, =1 ifaservice station is located on node j

=0 otherwise

2

Then the overall objective function to be maximized is the
fraction of the total flow that is expected to be intercepted
without changing the flow pattern. This objective function is
written as follows:

1
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with y, representing the presence of a service station on the
path p:

vy, =1 ifaservice station is located on path p

=0 otherwise

“)

and p, equal to the probability that all elements in the path
are functioning well. Quite naturally, it follows that:

2, X2, 5)

We write the probability p, as follows:
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with p., p. and p, the failure probabilities as described
before. The variables m,;,, m,,and ms, are the integer numbers
of respectively nodes, arcs and refueling stations on the
considered path p. The integers m,, and m,, are fixed for a
given road network. In contrast, ms,, follows from a proposed
placement of refueling stations. This variable is not binary and
is not identified upfront, which means the model does not
represent an Integer Linear program (ILP) anymore. To
reformulate the problem as an ILP, we rewrite equation 6 as
follows:

pp=1_ pn'mn,p+pa'ma,p+zm:’1 Zs’p""-p:n) ™

with

if m service stations are

located on path p (8)
=0 otherwise

z =1

s, p,m

These newly introduced binary variables z,, are subject to
following constraints:

Sz, <1 ©)

The facility location problem is now solved by
maximization of J (equation 3) by manipulation of the binary
variables, Xj, ¥, Zspm Subject to constraint equations (5) and (9).
Consider now that the total number of facilities to be placed is
equal to mguw. Then the solution is further constrained as
follows:

n

Zj:lxj<ms,mtal (10)

The above model is an extension of the model used in [15]
to include failure probabilities for individual elements in the
network. The model evaluates the expected performance under
such probabilities. The model of [15] was in turn based on the
classic flow interception facility location model by [14]. The
model is implemented in General Algebraic Modeling System
(GAMS, v23.2.1) coupled with the ILOG CPLEX solver
(v12.1.0). For the location of 20 service stations, the problem
contains 2298820 variables (x; (2620), y, (114941) and zpm
(114941 paths x maximally 20 stations) ) and 22983 constraints
(equation 5 and 8 for each path p and one for equation 9). This
problem is computationally very intensive due to the increased
number of decision variables. In particular, the binary decision
variables z;,. are new compared to the original problem as
formulated in [15]. As a result, the time needed to solve this
problem is considerably large. To scale this down, we solve a
reduced form of the above problem within this work as follows.

First, we define a subset of paths Pg as the set of paths with
a traffic flow higher or equal to a critical integer number, fe:

pePRprchrir (11)

and the flow over this subset (fr):

Sx=2pen [ (12)

Now, a reduced objective function is defined over this
subset alone:

1 Z
JR:— . .
f pEPRfP YpPp (13)
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Now, we optimize Jr instead of the original objective
function J with the same solver. In our study, we use a critical
flow (fur) of 5 cars per day. The number of paths in the subset
Pr is 9865 (8.6% of original). The traffic flow over this subset
(fr) amounts to 239278 cars per day, which is 62% of the
original, total flow. As such, it is clear that a fair reduction of
the size of mathematical programming problem still permits to
take the majority of the traffic flow into account. The total
number of variables is now 209785 and the number of
constraints 19731.

III.  Resurts

For all of the evaluated scenarios and for all number of
service stations, the service station locations were optimized.
As an example, Figure 1 shows the resulting service station
locations for scenario 1 (no failures) with 5 service stations. In
what follows, the optimized expected performance is analyzed
first as function of number of stations and failure rates. Next,
maps are shown for different scenarios and observed patterns
are explained.

A.  Optimized performance

Figure 2 shows the expected performance, i.e. the expected
fraction of intercepted cars without changing the normal traffic
flow, as obtained following optimization with the above
method. As can be expected, the highest line corresponds to the
scenario with no failures at all. One can see that the
performance increases from about 40% for 1 station to over
95% with 20 stations which is not very surprising either. In
addition, one can see that the marginal increase in performance
decreases with each added service station. The performances
obtained for failures of the service stations are very close to
those obtained for the failure-free scenario and show a very
similar trend. This means (1) that service station failure affects
the expected performance only marginally, (2) that the design
method can mitigate the effects of station failures well by
means of the optimization method or (3) both. We investigate
this further below. The lowest performance values are found
for the scenarios with 5% arc failure and with 5% node failure.
These failure rates have a dramatic impact as the performance
now ranges from about 12% for 1 service station to about 33%



for 20 service stations. This shows that the failures in the road
network are more important than failures of service stations if
one assumes similar failure rates for either one of them. It also
shows that robust optimization of the location of service
stations is likely not enough to mitigate road network failures.
In between the results for the normal scenario and the scenarios
with 5% failure rates for either arcs or nodes, one can observe
the results for the scenarios for 1% failure rates in either arcs or
nodes of the road network, as expected. The obtained values
(from about 30% to about 74%) suggest that the effect of the
failure rates is concave. l.e., a change of the failure rate at
lower values for the failure rate has a higher marginal effect
than at higher values.
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Figure 2. Optimized expected performance as function of the number of
installed stations for different failure scenarios.

B.  Detailed study of resulting locations

Figure 3 and 4 show the maps for scenario 1 for 15, resp. 20
service stations placed in the road network. One can compare
these as well with Figure 1, where 5 service stations are placed.
It can be seen that certain stations are kept in the same location
which suggests that a hierarchical manner of placing additional
service stations may be possible, instead of the brute-force
Integer Programming approach. In addition, most station
locations are found in a close neighborhood of the highways,
which are shown as thick lines, one in the North and one in the
South part of the city. This further suggests that a reduced
approach, in which the number of candidate locations is
reduced may be feasible.

The maps for all other scenarios were investigated in detail
for the cases where 5, 15 and 20 service stations were placed to
investigate any observable effects of the failure rates on service
station locations.. In the case of arc failures, some of service
station locations change for each applied failure rate (1%, 5%).
Figure 5 shows the locations for 15 stations with 1% failure
rate. Compared to the no failure scenario (scenario 1, Figure 3),
four stations are found at a different location. In particular, one

station originally on the highway at the south is now placed on
a road accessing this highway. Two stations in the North are
relocated to the West region of the city. In this region, six
service stations are now found in stead of four for the no failure
case. Of these six, three are at their original location. In the
South-East of the city, the service station locations remain the
same.

Figure 3. Optimized location of 15 service stations for scenario 1

Figure 5. Optimized location of 15 service stations for scenario 2 (arc failure
rate 1%)



Figure 6. Optimized location of 15 service stations for scenario 3
(arc failure rate 5%)

At arc failures of 5% (scenario 3), the service station
location change again (Figure 6). Compared to scenario 1
(Figure 3), ten stations remain at their location; compared to
scenario 2 (Figure 5), twelve stations remain at their location.
In scenario 3, one can now find four stations in the North. In
the West, five remain at their location while one is removed. In
the South, one can now find 2 stations on the highway again
and one additional service station changes location, towards the
inside of the city. Similar effects were observed for the arc
failure scenarios with 5 and 20 stations placed. While they can
be described in similar terms, it is however hard to draw a
general line in these results.

Figure 7 shows the results for a 1% node failure rate
(scenario 4). Compared to the results for scenario 1 (Figure 4),
one can see that one station is taken from the West and one
from the East and placed in the North-West region, where 5
stations are now placed fairly close to each other. Furthermore,
the two stations located close to each other in the North-East
region in Figure 4 are now further apart. For a 5% node failure
rate, results are shown in Figure 8. Now, the two stations added
in the North for the 1% failure rate are now located in the West,
though located towards the inner city. The results for 5 and 15
service stations are similar.

Figure 7. Optimized location of 20 service stations for scenario 4
(node failures rate 1%)

Figure 8. Optimized location of 20 service stations for scenario 5
(node failures rate 5%)

Station failures were also investigated. For a 1% failure
rate, the resulting locations for 15 and 20 stations are the same
as obtained for the no failures scenario (Figure 3 and 4). For
five stations, one service station is relocated as can be observed
from Figure 9, when compared to Figure 1. For a 5% failure
rate (scenario 7), the service station locations are the same
again as in Figure 1. Figure 10 shows the locations for scenario
7 with 15 placed service stations. One can see that two stations
are relocated. One is located the North-West region (Figure 3)
is moved further towards the North. The other one is located in
the North-West and is moved to a location on the highway in
the North. In the case of 20 stations (Figure 11), three stations
only are relocated compared to the no failure case (Figure 4). In
the North-West, two stations are moved so that the group of
three stations are found closer to each other. One station in the
East (Figure 4) is moved to the West region though towards the
inner part of the city. It is thus clear that accounting for failures
in the service stations does lead to different optimal locations.
As such, one can conclude that the limited effect on the
expected performance of the failure rate is mitigated to some
extend by facility relocation.

Figure 9. Optimized location of 5 service stations for scenario 6
(service station failure rate 1%)
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Figure 10. Optimized location of 15 service stations for scenario 7
(service station failure rate 5%)

Figure 11. Optimized location of 20 service stations for scenario 7
(service station failure rate 5%)

IV. ConcLusions

In this work, a systematic approach to the location of
service stations for recharging of electric vehicles is applied.
The applied facility-interception model is extended to account
for failures in infrastructural elements such as arcs (roads),
nodes (road junctions) and facilities (service stations). Results
indicate that failures of arcs and nodes have a large impact on
the resulting performance which cannot be mitigated easily by
facility location optimization without changing the flow
pattern. The situation is different for failure rates of the service
stations. In this case, a performance close to the original
performance can be obtained by means of the proposed
mathematical program. One of the most important assumptions
is that the locations are to be optimized for the given flow
pattern. This makes sense indeed for the scenario for no
failures, which is expected to prevail most of the time. For the
scenarios with failures, it is however easy to see that a
temporary rerouting of the flow may be easier to achieve. This
is currently under investigation and will be presented in future
work.
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